
Do Large Language Models Dream of Sockets?
Jari Arkko

jari.arkko@ericsson.com
Ericsson

Jorvas, Finland

Dag Lindbo
dag.lindbo@ericsson.com

Ericsson
Stockholm, Sweden

Martin Klitte
martin.klitte@ericsson.com

Ericsson
Lund, Sweden

ABSTRACT
This paper discusses the concept of protocol Large Language
Models (LLMs). These are models capable of conversing in
native protocol messages. These models could potentially
be used to help understand protocols, e.g., diagnose errors
from packet traces. Our ongoing research investigates the
feasibility of these models, their applications, and limitations.

We present our preliminary results, including how LLMs
understand the behavior of example systems such as web
servers. Our contribution focuses on testing how and how
well an LLM can diagnose protocol traces, receive and send
protocol messages over sockets, and handle complex protocol
fields and interfaces.

KEYWORDS
AI, LLMs, protocols, simulation, packet traces

ACM Reference Format:
Jari Arkko, Dag Lindbo, and Martin Klitte. 2024. Do Large Language
Models Dream of Sockets?. In Applied Networking Research Work-
shop (ANRW ’24), July 23, 2024, Vancouver, AA, Canada. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3673422.3674900

1 INTRODUCTION
Current LLMs enable conversation in different languages
and modalities, e.g., images and text. From a networking
perspective an interesting new type of language would be
protocols, the language of the machines. We can already
today converse with LLMs about protocol specifications, as
those are in human language. But could we converse using
these protocols natively, e.g., have the LLM understand a Do-
main Name System (DNS) request, or even send a response?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW ’24, July 23, 2024, Vancouver, AA, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0723-0/24/07
https://doi.org/10.1145/3673422.3674900

Protocols are clearly a type of a language, so we should
be able teach this language to LLMs. But what is the optimal
way to do this? How would it be used? Potential applications
include explaining how a system works, diagnosing issues in
packet traces, test data generation, simulation of the systems,
or even code generation to reproduce behavior, e.g., for quick
prototyping. Which of these are feasible in practice?

The work is based on Generative AI, LLMs, and Generative
Pre-trained Transformers (GPTs). We used GPT-4 [11], a
foundation model pre-trained with a large corpus of data.
There is prior work on understanding protocol specifica-

tions, e.g. Sharma and Yegneswaran [13] extract state ma-
chines and Duclos et al. extract formal models [3] from RFCs.
Such approaches also can be used for, e.g., generating code
[16] or fuzzing tests [9]. Specification data sets have also
appeared, e.g., Nikbakht et al. [10]. Packet traces can also
be used, e.g., non-AI methods are used by Wang et al. [14]
to infer state machines and by Holkovič et al. to diagnose
protocol errors [4]. Jiang et al. [6] and Yin et al. [17] apply
Generative AI to produce synthetic data resembling input
packet traces. This can be useful for testing. LLMs focused
on the digital world are also starting to appear, for instance
Wu et al. describe bGPT, a general-purpose byte oriented
LLM that is used, for instance, to model CPU states [15].

2 EXPERIMENTS
We investigated protocol LLM capabilities through a series of
small experiments. We collected packet traces from example
protocol systems in simple configurations, such as a recur-
sive DNS resolver (Bind9) that takes requests from clients,
configured to use a backend global resolver to resolve the re-
quests. Another example was a web server (Apache) serving
HTTP requests. By providing packet traces to an LLM we
hope to teach the LLM about the associated behavior, such as
what kind of requests result in what kind of responses. We
need to understand and generate native protocol messages,
but the objective is not so much in the protocol formats (tra-
ditional message syntax definitions such as ASN.1 do this
better), but rather in the behavior of the system implement-
ing the protocol. Real systems often have a complex interplay
of events in different interfaces.

The training can be performed by the creation of tailored
foundation models, fine tuning, etc. We have applied simple
few-shot, in-context learning [1] in our initial work. We also

https://orcid.org/0009-0008-9403-1559
https://orcid.org/0009-0008-6552-8689
https://orcid.org/0009-0005-0359-2464
https://doi.org/10.1145/3673422.3674900
https://doi.org/10.1145/3673422.3674900


ANRW ’24, July 23, 2024, Vancouver, AA, Canada Jari Arkko, Dag Lindbo, and Martin Klitte

built an experimental software package to enable feeding
protocol information to LLMs, connect them to sockets, etc.

What Can LLMs Say About Packet Traces? To convert
the packet traces to a form suitable for the LLM, we represent
them as a set of data packet sequences related to a particular
task (such as a resolving a name via DNS). Each sequence
consists of one or more packets. These are presented to the
LLM.We can then test if the LLM can explain behavior.When
we asked what happens when a client requests an IPv6 ad-
dress record from the resolver, the LLM explained the steps
in detail, e.g., including the details of how the resolver in our
case adds DNS extension mechanism options [2] to the re-
quests sent to the backend server. We can also feed the LLM
with another trace for comparison, to diagnose problems in
that trace. We created 50 faulty protocol messages and then
analyzed manually the correctness of the LLM’s diagnosis
of those messages. Correctness varied between 72% to 98%,
depending on the used techniques (more on this later).
What About Complex Fields? LLMs were able to pro-

cess protocol messages even as binary data. Hex dumps, for
instance, still enabled the LLM to find patterns in the traces,
such as recognizing what data should be copied from re-
quests to responses. But diagnosis results improved when
the LLM was presented decoded messages (e.g., via ASN.1).

It is also difficult for the LLMs to deal with protocol mes-
sage aspects that involve mathematical operations, such as
length or checksum fields, or encryption. We built a system
that combines traditional message syntax definitions with
symbolic representations and then fed these to the LLM. For
instance, a message with a checksum field followed by an
octet string could be represented as “Csum = CSUM(Payload)
| Payload = 0xaabbcc”. If the system supporting the LLM can
parse and construct such messages, it is easy for the LLM
to consume and produce such symbolic messages. With the
same in-context learning, the LLM with symbolic input per-
formed better than the LLM with only binary input, in par-
ticular with checksum and other complex fields. This is not
a surprise, given that LLMs are unable to directly perform
mathematical operations. AI applications that use reasoning
employ similar symbolic techniques [12].

What Is the Source of Knowledge? Can the capabilities
of protocol LLMs be explained due to the intrinsic knowledge
that the foundation model (such as GPT-4) has, or due to the
traces provided during our in-context learning? To test this,
we defined a new protocol, unknown to the LLM. The only
knowledge the LLM had of this new protocol was provided
via the traces. The LLM performed well even with the new
protocol, i.e., the traces appeared to be sufficient. Of course,
any intrinsic knowledge the LLM has can help. We tested
this, and diagnosis results improved when the protocol spec-
ification was a part of the training input to the LLM (if the
experiment otherwise had room to improve).

Can We Simulate a System? The use of LLMs does
not have to be limited to analysis. We built a system that
connects data used in-context learning, the LLM, and live
sockets. We can then ask the LLM to “predict” what the next
event should be, e.g., as in this prompt: “Given the training
input sequences, what would be the correct next input in
sequence, if we received the following input?” This succeeds
surprisingly well. For instance, we were able to use the LLM
as a real, functioning (if slow) recursive DNS resolver based
on the packet capture sequences alone. However, the LLM
will not perform things that are not visible in the external
behavior (such as DNSSEC validation).

Can we generate code? We experimented with the LLM
producing code based on the traces of simple protocols. The
generation was guided by the formal syntax of the protocol
which defines the available messages and their fields. This
resulted in implementations that are similar to the simulators
discussed above but operate without the LLM and are faster.
Are Protocols Everything? Clearly, protocols are just

one aspect of complex system behavior. Take a web server
as an example. It has a protocol interface, but also other com-
plex functionalities such as interaction with the file system
for content. A web server viewed only through the protocol
lens would seemingly come up with content without any
explanation why this particular content was provided. The
behavior of the web server is not defined solely by the pro-
tocol interface. But we can observe the system across all of
its external interfaces. We recorded the behavior of a web
server both on network and file related system call interfaces
using the Linux strace tool [8]. This enabled the LLM to learn
the behavior of opening files requested on GET requests and
providing the content of those files in responses.
Should Cyberdyne Systems access your files? There

are many security concerns, such as what communication
channels or operating system resources the LLM is allowed to
access. We limited the LLM to specific resources, e.g., specific
peers and file system parts.

3 CONCLUSIONS
It is intriguing that LLMs can learn protocol languages, at
least in simple cases. There are potential benefits for several
networking tasks. Given hallucination [5] and other limita-
tions of LLMs, the likely use cases are in diagnostics, test
generation, and simulation. We plan to further dive into sys-
tematic evaluation of LLM fidelity in these areas and more
complex configurations, training methods, custom models,
protocol-syntax driven tokenization [7], and the possibility
of LLM-provided protocol optimizations.

This work was supported by Ericsson. F. Öström, D. Cor-
coran, J. Jiménez, F. Moradi, T. Kauppinen, P. Mátray, and A.
Karapantelakis provided many insights.



Do Large Language Models Dream of Sockets? ANRW ’24, July 23, 2024, Vancouver, AA, Canada

REFERENCES
[1] Tom B. Brown, Benjamin Mann, and Nick Ryder et al. 2020. Language

Models are Few-Shot Learners. arXiv:2005.14165 [cs.CL]
[2] Joao da Silva Damas, Michael Graff, and Paul A. Vixie. 2013. Extension

Mechanisms for DNS (EDNS(0)). RFC 6891. https://doi.org/10.17487/
RFC6891

[3] Martin Duclos, Ivan A. Fernandez, Kaneesha Moore, Sudip Mit-
tal, and Edward Zieglar. 2024. Utilizing Large Language Mod-
els to Translate RFC Protocol Specifications to CPSA Definitions.
arXiv:2402.00890 [cs.CR]

[4] Martin Holkovič, Ondřej Ryšavý, and Libor Polčák. 2019. Using
Network Traces to Generate Models for Automatic Network Ap-
plication Protocols Diagnostics. In Proceedings of the 16th Interna-
tional Joint Conference on e-Business and Telecommunications Vol-
ume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS (Praha, CZ).
SciTePress - Science and Technology Publications, 37–47. https:
//doi.org/10.5220/0007929900370047

[5] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing
Qin, and Ting Liu. 2023. A Survey on Hallucination in Large Lan-
guage Models: Principles, Taxonomy, Challenges, and Open Questions.
arXiv:2311.05232 [cs.CL]

[6] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul Schmitt, Francesco
Bronzino, and Nick Feamster. 2023. Generative, High-Fidelity Net-
work Traces. In Proceedings of the 22nd ACM Workshop on Hot Top-
ics in Networks (, Cambridge, MA, USA,) (HotNets ’23). Association
for Computing Machinery, New York, NY, USA, 131–138. https:
//doi.org/10.1145/3626111.3628196

[7] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. 2022.
Rethinking data-driven networking with foundation models: chal-
lenges and opportunities. In Proceedings of the 21st ACM Workshop
on Hot Topics in Networks (Austin, Texas) (HotNets ’22). Association
for Computing Machinery, New York, NY, USA, 188–197. https:
//doi.org/10.1145/3563766.3564109

[8] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac.
2017. A Survey on Function and System Call Hooking Approaches.
Journal of Hardware and Systems Security (2017), 114–136. https:
//doi.org/10.1007/s41635-017-0013-2

[9] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoud-
hury. 2024. Large Language Model guided Protocol Fuzzing. https:
//doi.org/10.14722/ndss.2024.24556

[10] Rasoul Nikbakht, Mohamed Benzaghta, and Giovanni Geraci. 2024.
TSpec-LLM: An Open-source Dataset for LLM Understanding of 3GPP
Specifications. arXiv:2406.01768 [id=’cs.NI’]

[11] OpenAI, Josh Achiam, Steven Adler, and et al. 2024. GPT-4 Technical
Report. arXiv:2303.08774 [cs.CL]

[12] Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang.
2023. Logic-LM: Empowering Large Language Models with Symbolic
Solvers for Faithful Logical Reasoning. arXiv:2305.12295 [cs.CL]

[13] Prakhar Sharma and Vinod Yegneswaran. 2023. PROSPER: Extracting
Protocol Specifications Using Large Language Models. Proceedings
of the 22nd ACM Workshop on Hot Topics in Networks (2023). https:
//api.semanticscholar.org/CorpusID:265158541

[14] YipengWang, Zhibin Zhang, Danfeng (Daphne) Yao, Buyun Qu, and Li
Guo. 2011. Inferring Protocol State Machine from Network Traces: A
Probabilistic Approach. In Applied Cryptography and Network Security,
Javier Lopez and Gene Tsudik (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1–18.

[15] Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong
Sun. 2024. Beyond Language Models: Byte Models are Digital World
Simulators. arXiv:2402.19155 [cs.LG]

[16] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan, and
Barath Raghavan. 2021. Semi-Automated Protocol Disambiguation
and Code Generation. arXiv:2010.04801 [cs.NI]

[17] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar.
2022. Practical GAN-based synthetic IP header trace generation using
NetShare. In Proceedings of the ACM SIGCOMM 2022 Conference (Am-
sterdam, Netherlands) (SIGCOMM ’22). Association for Computing
Machinery, New York, NY, USA, 458–472. https://doi.org/10.1145/
3544216.3544251

https://arxiv.org/abs/2005.14165
https://doi.org/10.17487/RFC6891
https://doi.org/10.17487/RFC6891
https://arxiv.org/abs/2402.00890
https://doi.org/10.5220/0007929900370047
https://doi.org/10.5220/0007929900370047
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3626111.3628196
https://doi.org/10.1145/3626111.3628196
https://doi.org/10.1145/3563766.3564109
https://doi.org/10.1145/3563766.3564109
https://doi.org/10.1007/s41635-017-0013-2
https://doi.org/10.1007/s41635-017-0013-2
https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.14722/ndss.2024.24556
https://arxiv.org/abs/2406.01768
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.12295
https://api.semanticscholar.org/CorpusID:265158541
https://api.semanticscholar.org/CorpusID:265158541
https://arxiv.org/abs/2402.19155
https://arxiv.org/abs/2010.04801
https://doi.org/10.1145/3544216.3544251
https://doi.org/10.1145/3544216.3544251

	Abstract
	1 Introduction
	2 Experiments
	3 Conclusions
	References

