The Internet of Things:

What's Up Next?

Jari Arkko

Chair, Internet Engineering Task Force

Expert, Ericsson Research, Finland

PACE OF CHANGE

JUST THE BEGINNING

When one person connects, their world changes.

With everything connected, our world changes.

NETWORKED SOCIETY

THE INTERNET OF THINGS

- Monitoring and controlling real world objects – provide smartness
- Meeting the needs of enterprises, people and society
- Application domains are endless
- The underlying technology is
 embedded networked
 computing with sensors,
 actuators and tags

DRIVERS AND CHARACTERISTICS \$

Lean

Green

Safe

Fun

Servitization

Innovation

Marketplaces

Participation

Transformation - The Big Picture

POWER SHIFT

RESOURCES & ENVIRONMENT

GLOBAL CONNECTEDNESS

ENVIRONMENT

URBANIZATION

INTERNET OF THINGS

DATA AND INSIGHTS

SOCIAL MEDIA

CLOUD & NETWORKS

PERMISSIONLESS INNOVATION
& OPEN GLOBAL INTERNET

IS IT HAPPENING?

Itron

BAYER)

SIERRA WIRELESS

ERICSSON

TECHNOLOGIES

BiTX

ENEA

logica

INILEX

accenture

Mercedes-Benz

C

COYOTE

SONY

(Nintendo

Selecta

DIEBOLD"

Landis₊

WHAT IS NOW AND NEXT?

"THEN AND NOW"

- Metering
- Telematics
- > Point-of-Sale
- Healthcare
- Security and Surveillance
- > Smart Grid
- Transport

"RECENT"

- > Wearables
- Sports and wellness
- Home automation
- Smart appliances
- Industrial
- Streetlights

"NEXT"

- Manufacturing
- Home convenience (ambience, lighting, assisted living)
- > Food safety
- Agriculture
- Water
- Natural resources
- Materials
- > Self-driving vehicles
- > the unpredictable

MICROELECTRONICS

Dual-Core ARM Cortex-A9 Module 1 GB RAM and 8 GB Flash (Source: linuxgizmos.com)

LOW POWER

New ARM-powered chip aims for battery life measured in decades

Atmel's 32-bit SAM L controllers, shipping soon, take low power to new extremes.

by Sean Gallagher - Mar 31, 2015 1:45am EEST

Low-power ARM CPU (Source: arstechnica.com)

Also matches what is becoming achievable in mobile networks

LOW POWER

Energy consumption of various tasks on 8-bit CPUs (Source: Margi et al at IEEE WiMAN 2010)

1G 2G 3G 4G 5G

5G AND NETWORKED SOCIETY

MACHINE TYPE COMMUNICATION

Monitoring & automation of buildings, city infrastructure, smart metering

Long battery life

Massive numbers

Long range

Small data

Logistics, tracking and fleet management

Reliable real-time communication

High reliability

High availability

Remote manufacturing, training, surgery

Low latency

Critical machine-type communication

Intelligent Transportation Systems

MATERIALS

Smart clothing technology (Source: digitaltrends.com)

Internet of Food projects (Source: thnk.org)

INTERNET OF FOOD

< PREVIOUS I ALL PROJECTS I NEXT >

MATERIALS

Concrete instrumentation (Source: Construction and Building Materials Vol 22)

Construction and Building Materials

Volume 22, Issue 2, February 2008, Pages 111-120

Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors

Ashley Norrisa, Mohamed Saafib, A. Peter Rominec

Cement (Photo: Oussame Zrafi, Wikipedia)

Smart igloos

(Source: Arkko & Keränen, Ericsson Labs)

The intelligence is in the network, not the devices

Cloud – connecting the devices together

User interfaces modeled on social networking

SOCIAL WEB OF THINGS

My Profile

Alerts (0)

Notifications (5)

Requests (2)

Erica Ericsson

What's on your mind?

Media

Energy

Live Weather Report - less than a minute ago The cold front just reached the west coast with a 12 degree drop in temperature to 5 below freezing. The cold front reaches **Home** in about 30 minutes.

Traffic - less than a minute ago Very slippery roads and slow traffic at the west coast as the roads suddenly freezes.

Calendar - less than a minute ago Adjusting suggested departure time for the appointment downtown to allow for longer travel time.

A shift of focus

- Devices
- Connectivity
- Closed

- Data
- Analytics
- Automation
- Open

MORE THAN CONNECTED DEVICES

Enterprise business support and integration: CRM, ERP, ... User exposure: Retail, Portals, Visualizations, APIs Marketplaces: Brokering, transaction mgmt,

Common applications: Preventive Maintenance, Automation, Items Tracking, Building Automation, Farming Control, Environmental Monitoring, ...

Knowledge Management and Processing: Real World Model, Resource modelling, Analytics, Context Awareness, Reasoning, Actionable services, Learning, Automation, ...

Common enablers: Device and Resource Management, Data and Event capture, Data Warehousing, Cloud, Distributed Execution Environment

Connectivity: Cellular, Fixed, Satellite, Capillary Networks, Managed Connectivity

Monitor&Control: Sensors, Actuators, Tags, Devices, Gateways, WSAN

Real World Assets: Building, Smart Grid, Vehicle, Body,...

Necessary developments

Devices

Intelligent software

Semantic interoperability

Open

NETWORKED VALUE CHAINS

70% of all computer chips do not go into computers

John Deere CEO Bob Lane says he doesn't make tractors but rather "sophisticated mobile information factories."

- GPS shows where it is
- Microwave sensors measure cotton flow
- RFID tags let processors know origin of each bundle
- Wireless communications
- Computing power of 8 PC's

CONSUMER "Instant bicycling – just add muscles"

INDUSTRIAL

Remote operation

"MINING 2.0"

For a safer and healthier working environment

For a more efficient operation

AGRICULTURE

Industrial: Plantagon

Urban: Bitponics

Field: Crab farming

"PERMISSIONLESS INNOVATION"

SOME AREAS OF INNOVATION

IP itself:
Building any communications
services on top of Ip

The Web:
Both for browsing and building applications

WebRTC:
Real-time communications in your browser

SDN: W
Programmable
networking

Web of Things:
Building IOT systems on the
Web Protocols

EXPERIENCES

- Legacy devices are moving to an all-IP model
- It is important to reach interoperability at all layers; formats and web interfaces are very important too, not just IP
- The key is general purpose technology (3G, WLAN, web)
- Web tools is the way the market is going

Transformation

multi-purpose devices web paradigm apps migrate to cloud

Benefits

cost efficient devices
large developer community
new roles in the value network

(Source: Zach Shelby)

THE WEB OF THINGS (WOT)

This is a very attractive model for developing smart object applications

- Very successful for other applications
- Widely available tools & millions of programmers
- Simple and well-defined
- "Permissionless innovation"

MAKE IOT GO MAINSTREAM

> Go IP

- Reduce technology fragmentation
- Drive IP to the "tiniest of devices"

> Go Web

- Use standard web technologies
- Ease enterprise SOA integration
- Attract the global developer community

Go Simple

- Make devices application generic
- Drive value from devices to cloud enablement
- Break device silos

IETF & THE INTERNET OF THINGS

> Basic IP communication

- IP(v6) over Foo
- -6TISCH WG

> Web tools

- CORE WG & COAP
- HTTPBIS WG & HTTP/2
- JSON, JOSE WG

> Security

- TLS, DTLS, JOSE
- DICE WG, ACE WG

> Routing

- Mesh networking
- Ad hoc networks
- ROLL WG & RIPL
- MANET WG & OSLR, AODV, ...

> Configuration

- Autonomic networking
- HOMENET WG
- ANIMA WG

Other

- EMAN WG

IOT AND INTERNET GOVERNANCE

First answer: nothing changes

- No new Internet Governance needed
- Does not need new naming
- Most operations are in databases & private clouds

IOT AND INTERNET GOVERNANCE

Privacy

- Technical and practical issues
- User ownership of data

Market creation

- Ensure competitive market
- Many players for different roles

IPv6

Important for reachability

Interoperability

- Competition
- Switching costs
- Long-life devices

SOME CONCLUSIONS

Building the networked society

- Machine-type communication is a fundamental building block
- Microelectronics, mobile networks, IP, the web protocol stack are all evolving to meet the needs
- The ability to connect different pieces together in innovative & open ways is a key enabler

