Case Study in Using Virtualization as an Architectural Tool

Dagstuhl Network Virtualization Workshop, September 2008

Jari Arkko
jari.arkko@ericsson.com
Ericsson Research
Background

• Virtualization has been used to create private networks, use slices of experiment platforms, ...
• But could virtualization be a tool in a new Internet architecture by its own right?
• Observe where innovation is in the current Internet
• The hypothesis is that this situation could be different in a future architecture if it supported virtualization
My Approach

Attempt to test the hypothesis through examples
• Is virtualization useful in these examples?
• What does it have to do to be useful?
• Has virtualization already been used?
• Understand better the limits of virtualization

Examples:
• Improvements to routing scalability
• Introduction of IPv6
Example 1: Routing Scalability

• Recent concern in the growth of table size and dynamics in the global BGP routing tables

• This problem can be solved in several ways:
 − Better microelectronics in routers
 − Better algorithms managing the electronics
 − Evolutionary changes in BGP
 − Revolutionary changes in routing protocols
 − Revolutionary changes in Internet architecture
Routing Scalability, Cont'd

How do these work with virtualization:

- Better microelectronics in routers
 - Cannot do this

- Better algorithms managing the electronics
 - This might be possible
 - But it is likely that the algorithms related to RIB-to-FIB updates are very hardware specific, for instance
Routing Scalability, Cont'd

- **Evolutionary changes in BGP**
 - Given that these are evolutionary, normal protocol engineering tools in BGP should suffice?
 * Not always easy, have to work through older devices
 - If it was possible to deploy new code in the entire Internet via virtualization, would it help?
 - But note that this would be *changes to an existing network*, not new code in a different slice
 - Unlikely in the global scale, but possible per-domain
 - Separating the commodity substrate from the intelligence is still useful for faster evolution
Routing Scalability, Cont'd

- Revolutionary changes
 - A new routing protocol, separation of addresses for core and the edge, or a full idloc separation
 - Each one of these is easily deployable by itself
 - New protocols run in new port numbers,
 - A mesh of tunnels crosses the old Internet to connect the new parts to each other
 - New hosts can behave in new ways
 - The tricky part is making it possible to communicate between the new and the old Internets
 ("I hear there's rumors on the, uh, Internets" -- G. W. Bush)
 - Inserting new code/entries everywhere is contrary to the idea of relieving pain in the forwarding table
Example 2: IPv6 Introduction

- Protocol-wise ready in late 1990s
- Today widely but not universally implemented in hosts and routers; not very widely turned on
- Would virtualization have helped?
 - Early adopters using IPv6 in their own networks
 - Full-blown adoption in ISP networks
 - Ability to communicate between the two Internets
IPv6 Introduction, Cont'd

• Early adopters using IPv6 in their own networks
 - In fact, it did help (virtual tunnels)
• Full-blown adoption in ISP networks
 - Adding IPv6 to router products – Yes
 - Reaching feature & speed parity with IPv4 – ?
 - ISP peering policy and incentives – ?
• Ability to communicate between the two Internets
 - It would be easier to deploy translators between network edges – but this requires advanced functionality
Conclusions

• Existing virtualization tools have been used
• Additional tools useful, but not silver bullets
 − Modularization to a dumb substrate and an intelligent server speeds up innovation
• The crux is what abstraction you provide
 − Mere separation is insufficient – need interworking
 − Cannot simply ask to do any random act – very dependent on hardware capabilities
 • Random packet attack
 − How does all this work with peering, TE, etc
 − Supporting ”The Internet” vs. a private network
 − Most interesting cases involve non-trivial operations