The Internet of Things: What’s Up Next?

Jari Arkko

Chair, Internet Engineering Task Force
Expert, Ericsson Research, Finland

With thanks to Jan Höller (Ericsson) and others who have provided much of this material
JUST THE BEGINNING

When one person connects, their world changes.

With everything connected, our world changes.
A VISION

In the networked society things, places, and real-world processes are first-class citizens on the Internet.

And they network – for the benefit of society, life and business.
THE INTERNET OF THINGS

- Monitoring and controlling real world objects – provide smartness
- Meeting the needs of enterprises, people and society
- Application domains are endless
- The underlying technology is embedded networked computing with sensors, actuators and tags
DRIVERS AND CHARACTERISTICS

Lean | Green | Safe | Innovation | Collaboration

Fun | Servitization | Marketplaces | Participation
Transformation - The Big Picture

POWER SHIFT
RESOURCES & ENVIRONMENT
GLOBAL CONNECTEDNESS
ENVIRONMENT
URBANIZATION

INTERNET OF THINGS
DATA AND INSIGHTS
SOCIAL MEDIA
CLOUD & NETWORKS
PERMISSIONLESS INNOVATION & OPEN GLOBAL INTERNET
IS IT HAPPENING?
WHAT IS NOW AND NEXT?

“THEN AND NOW”
› Metering
› Telematics
› Point-of-Sale
› Healthcare
› Security and Surveillance
› Smart Grid
› Transport

“RECENT”
› Wearables
› Sports and wellness
› Home automation
› Smart appliances
› Industrial
› Streetlights

“NEXT”
› Manufacturing
› Home convenience
 (ambience, lighting, assisted living)
› Food safety
› Agriculture
› Water
› Natural resources
› Materials
› Self-driving vehicles
› …. the unpredictable
Dual-Core ARM Cortex-A9 Module
1 GB RAM and 8 GB Flash
(Source: linuxgizmos.com)
NEW ARM-POWERED CHIP AIMS FOR BATTERY LIFE MEASURED IN DECADES

Atmel's 32-bit SAM L controllers, shipping soon, take low power to new extremes.

by Sean Gallagher - Mar 31, 2015 1:45am EEST

Low-power ARM CPU
(Source: arstechnica.com)

Also matches what is becoming achievable in mobile networks
LOW POWER

Energy consumption of various tasks on 8-bit CPUs
(Source: Margi et al at IEEE WiMAN 2010)
5G AND NETWORKED SOCIETY

- Multi-domain Performance
- Foundation for Efficient Industries and Society
- Energy Performance
- Global Standard
- Mass Market Personalized TV
- Massive Machine Type Communications
- Critical Machine Type Communications
MACHINE TYPE COMMUNICATION

- Monitoring & automation of buildings, city infrastructure, smart metering
 - Long battery life
- Smart agriculture and farming
 - Low cost
- Connected vending machines
 - Massive numbers
- Logistics, tracking and fleet management
 - Long range
 - Small data
- Remote patient monitoring
- Smart grid distribution automation
 - Reliable real-time communication
- Autonomous vehicles
 - High reliability
- Remote control of machines
 - Remote manufacturing, training, surgery
 - Low latency
- Industrial manufacturing and control
 - High availability

Critical machine-type communication

Factory Automation

Motion Control

Intelligent Transportation Systems

Smart Grid

Process Automation

Automated Guided Vehicle
MATERIALS

Smart clothing technology (Source: digitaltrends.com)

Internet of Food projects (Source: thnk.org)

INTERNET OF FOOD
MATERIALS

Concrete instrumentation
(Source: Construction and Building Materials Vol 22)

Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors
Ashley Norris¹, Mohamed Saatif², Peter Romine³

Smart igloos
(Source: Arkko & Keränen, Ericsson Labs)

Cement (Photo: Ouassame Zrafi, Wikipedia)
The intelligence is in the network, not the devices

Cloud – connecting the devices together

User interfaces modeled on social networking
A shift of focus

- Devices
- Connectivity
- Closed

- Data
- Analytics
- Automation
- Open
MORE THAN CONNECTED DEVICES

Enterprise business support and integration: CRM, ERP, ...
User exposure: Retail, Portals, Visualizations, APIs
Marketplaces: Brokering, transaction mgmt,

Common applications: Preventive Maintenance, Automation, Items Tracking, Building Automation, Farming Control, Environmental Monitoring, ...

Knowledge Management and Processing: Real World Model, Resource modelling, Analytics, Context Awareness, Reasoning, Actionable services, Learning, Automation, ...

Common enablers: Device and Resource Management, Data and Event capture, Data Warehousing, Cloud, Distributed Execution Environment

Connectivity: Cellular, Fixed, Satellite, Capillary Networks, Managed Connectivity

Monitor&Control: Sensors, Actuators, Tags, Devices, Gateways, WSAN

Real World Assets: Building, Smart Grid, Vehicle, Body,...
Necessary developments

<table>
<thead>
<tr>
<th>Devices</th>
<th>Intelligent software</th>
<th>Semantic interoperability</th>
<th>Open</th>
</tr>
</thead>
</table>
NETWORKED VALUE CHAINS

70% of all computer chips do not go into computers

John Deere CEO Bob Lane says he doesn’t make tractors but rather “sophisticated mobile information factories.”

- GPS shows where it is
- Microwave sensors measure cotton flow
- RFID tags let processors know origin of each bundle
- Wireless communications
- Computing power of 8 PC’s
CONSUMER
“Instant bicycling – just add muscles”

- Heart rate
- Wireless gears
- Cadence
- Power
- Spin
- GPS
- Temperature
- Barometric pressure
- Weather forecast
- Navigation
- Internet
- Apps
- Accelerometer
- Gyroscope
- Training coach
- Autonomous gear shifting
- Crash/emergency detection
- Realtime route planning
- Virtual racing
- Social media, ...

“Instant bicycling – just add muscles”
INDUSTRIAL

Remote operation

"MINING 2.0"

For a safer and healthier working environment

For a more efficient operation
"PERMISSIONLESS INNOVATION"
SOME AREAS OF INNOVATION

IP itself:
Building any communications services on top of IP

WebRTC:
Real-time communications in your browser

The Web:
Both for browsing and building applications

SDN:
Programmable networking

Web of Things:
Building IOT systems on the Web Protocols
EXPERIENCES

- Legacy devices are moving to an all-IP model
- It is important to reach interoperability at all layers; formats and web interfaces are very important too, not just IP
- The key is general purpose technology (3G, WLAN, web)
- Web tools is the way the market is going
THE WEB OF THINGS (WOT)

This is a very attractive model for developing smart object applications

- Very successful for other applications
- Widely available tools & millions of programmers
- Simple and well-defined
- “Permissionless innovation”
MAKE IOT GO MAINSTREAM

› Go IP
 – Reduce technology fragmentation
 – Drive IP to the “tiniest of devices”

› Go Web
 – Use standard web technologies
 – Ease enterprise SOA integration
 – Attract the global developer community

› Go Simple
 – Make devices application generic
 – Drive value from devices to cloud enablement
 – Break device silos
IETF & THE INTERNET OF THINGS

› Basic IP communication
 – IP(v6) over Foo
 – 6TISCH WG

› Web tools
 – CORE WG & COAP
 – HTTPBIS WG & HTTP/2
 – JSON, JOSE WG

› Security
 – TLS, DTLS, JOSE
 – DICE WG, ACE WG

› Routing
 – Mesh networking
 – Ad hoc networks
 – ROLL WG & RIPL
 – MANET WG & OSLR, AODV, …

› Configuration
 – Autonomic networking
 – HOMENET WG
 – ANIMA WG

› Other
 – EMAN WG
IOT AND INTERNET GOVERNANCE

First answer: nothing changes
No new Internet Governance needed
- Does not need new naming
- Most operations are in databases & private clouds
IOT AND INTERNET GOVERNANCE

Privacy
- Technical and practical issues
- User ownership of data

IPv6
- Important for reachability

Market creation
- Ensure competitive market
- Many players for different roles

Interoperability
- Competition
- Switching costs
- Long-life devices
SOME CONCLUSIONS

Building the networked society

• Machine-type communication is a fundamental building block

• Microelectronics, mobile networks, IP, the web protocol stack are all evolving to meet the needs

• The ability to connect different pieces together in innovative & open ways is a key enabler