Mobility in Heterogeneous 4G networks using Mobile IP

Charles E. Perkins charliep@computer.org Miracle: November 10, 2011

Where is Mobile IP in 4G?

- LTE design loses the simplicity and power of IP mobility
 - Per-application handovers
 - Per-radio technology handovers
- → Complicated heterogeneous handovers within LTE
 - > additional operational expense
 - > more difficult interoperability testing (IOT)
 - more expensive and longer development cycles
 - reduced functionality
 - difficulty for future extensibility
 - poorer user experience.

Future Internet is "all mobile". Will IETF be relevant?

Modular view of Mobile IP design

- Address space mgmt
 - Home agent intercepts / manages home address
 - assignment / acquisition of care-of address
 - \rightarrow very efficient instance of a "locator / ID" style solution
- Tunnel management
 - IPv*-within-IPv*, GRE, "minimal", routing header
 - reverse tunnel control
- Authentication / authorization services
 - IPv4 authentication extensions
 - IPsec
 - AAA interface

These modular components are crucial for LTE

Possible defects of Mobile IP (from the point of view of 3GPP)

- Wrong tunnel protocol
- Wrong security
- Wrong home agent architecture
- Client-controlled approach disfavored
- AAA interface favorable to IP-address based bookkeeping, not session-based
- No desire for statistical multiplexing?
- Why enable seamless handovers to competitor's networks?
- Misunderstanding the power of layer-3 approach
- Mobile context types of interest to 3GPP not defined

Wrong tunnel protocol

- Operators have a huge investment in GTP. GTP has been refined for many years, with numerous extensions (Information Elements) added over time
- Tunnel setup in Mobile IP appears oversimplified; many more traffic controls are specified for GTP.
 - Operations for optimizing data-plane are missing (never explicitly part of any Mobile IP design criteria)
 - Accounting controls missing from Mobile IP tunneling
 - Many other controls not present in Mobile IP (needed or not?)

Wrong tunnel protocol: Solutions

- part 1: Enable home agent to utilize alternative encapsulations, make extensible by protocol number (e.g., GTP == NNNN)
 - draft-perkins-mext-gtpdata needs update
- part 2 (alternative 1): Identify modular classification of the accounting and traffic management controls existing within GTP-C, duplicate within BU/PBU
- part 2 (alternative 2): Enable GTP-C as a control interface to the data-plane features of the home agent (more on this later)

Incompatible security design

- Mobile IPv4 specifies relatively simple extensions to basic control signaling to assure authentication
- Mobile IPv6 specifies IPsec
- Problem: mobile devices rarely implement IPsec or MIP
- Problem: 3GPP security architecture has evolved along a certain path over time, and Mobile IPv6 does not make that available, requiring IPsec / IKE instead
- Problem for non-LTE handover: access authentication is done separately from authentication for signaling tunnel management from the home network

Incompatible security design: Solutions

- 1. Allow home agent to invoke alternative security mechanisms, using SPI of authentication data header
 - draft-patil-mext-mip6issueswithipsec
- 2. Enable integration of access authentication with authentication used for tunnel retargeting. Note: in some cases, same AAA is used for both anyway.
 - draft-perkins-netext-eapbu, for example
- **3.** Show Mobile IP authentication satisfies 4G req's
 - mobile can verify authenticity of the network
 - hetwork can verify the authenticity of the mobile
 - additional crypto parameters do not improve

Wrong home agent architecture

- 4G network designed to separate mobility management control plane from data-plane tunneling through the packet core.
- Needed: separation of home agent into control plane and data plane modules.
- Solution part 1: enable alternative HA tunnel address so the mobile receives incoming tunneled packets from expected IP address, and delivers encapsulated outgoing packets to desired gateway address.
 - draft-perkins-mext-hatunaddr, for example
- Solution part 2: control plane $\leftarrow \rightarrow$ data plane interface

Client-controlled approach disfavored

- Solution: PMIP for network-controlled operation
 - but see next slide
- Solution not in use: DSMIPv6 in LTE specifications
 - operator policy? perceived as redundant?
- Analysis needed to precisely characterize trade-offs for client-based versus network-based approach
 - Windows Mobile IP client "rare"
 - Network-based policy enforcement
 - Loss of operator control

Session-based accounting

- GTP has features to enable per-session accounting, which have not been specifically enabled for PMIP.
- Solution: Use GRE key as tunnel endpoint identifier (TEID), and specify new mechanisms to tie GRE/TEIDs into existing accounting mechanisms for 3GPP.
 - Including new session controls a la GTP-C?
- Analysis needed for understanding trade-off between added complexity of session-based signaling versus simple connectionless model of operation.

Can current session management handle shorter sessions, huge growth, WiFi offload, …?

Heterogeneous handovers

- Characterize need for IP-address continuity
 - real-time applications
 - Iengthy transactions
- Identify specific RATs/use cases
 - Needed for WiFi "offload"
- Compare user experience
 - Users are now trained to expect bad performance [URP]
- Future need for vehicular
- Single-radio advantage
- SFF-based approach (described next) versus PAR/NAR
- high-speed WLANs versus 4G speeds

SFF-oriented roaming agreement

- SFF (Signal Forwarding Function) enables pre-registration and pre-authentication of mobile node in target Access Network
- Especially valuable for single-radio devices
- Specified in IEEE 802.21c -- e.g., for WiMAX, WiFi, potentially LTE

Access Information Database

- Assistance for heterogeneous network handovers
- Per-operator database authoritative for network
- Mobile to access information on demand
 - 3GPP has ANDSF
 - IEEE 802.21 has MIIS
 - IETF has PAWS
 - Seamoby CARD not used; should have been revisited?
- Commercial access-point information database useful for WiFi, for example

Access model for roaming partners

- How does one operator provide all the information useful to its customers that have heterogeneous radios?
- May be authoritative for only one radio technology (RAT)
- Access needed to authoritative data from roaming partners (at least)
- Partner information should be cached by operator to avoid frequent cross-network access
- Even more important for "single-radio" solutions
- Needed: cross-network database access so that each operator can fetch and provide to UEs authoritative data

Proposal: local caching

- For fastest response, UE should receive local access information from a local cache agent
- Only information about local neighborhood(s) kept
- Basestations often have overlapping neighborhoods
- Same database access mechanism can be used by roaming partners and local cache agents
 - But, likely restricted to specific neighborhood only
 - Access formats, triggers to be defined
 - Publish/subscribe model a good choice
 - Caching policy restrictions for per-UE information

AIDB per operator network useful for handovers

Operators A and B are roaming partners

✤ Access network AN₁ overlaps access network AN₂

✤ AIDB cache AN₁ subscribes to small part of AIDB_A (Operator A)

✤ AIDB cache AN₁ subscribes to small part of AIDB_B (Operator B)

tellabs®